Is Carbon Responsible for the Anisotropy in the Earth’s Inner Core?

L. Gao1,2,*, B. Chen1, M. Lerche2,3, E. E. Alp2, W. Sturhahn2, J. Zhao2, H. Yavaş2, J. Li1

1Department of Geology, University of Illinois, Urbana, IL 60801, USA
2Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
3High Pressure Synergetic Consortium, Carnegie Institution of Washington, Argonne, IL

* Contact information: ligigao2@illinois.edu; https://netfiles.uiuc.edu/liligao2/

The Earth’s inner core is seismically anisotropic: compressional sound waves travel 3-4% faster along the spin axis than in the equatorial plane. The cause of the anisotropy has been generally attributed to preferential alignment of iron crystals. The density of the inner core is smaller than pure iron under corresponding pressure and temperature conditions, presumably due to the presence of lighter elements such as H, C, O, Si or S. In this study, we measured the compressional and shear wave velocities of Fe$_3$C using nuclear resonant inelastic X-ray scattering in conjunction with X-ray diffraction experiments. Our results indicate that compared to pure iron, Fe$_3$C provides a better match of compressional and shear wave velocities to the seismically observed values of the inner core, supporting carbon as a light element in the inner core. We observed large elastic anisotropy in Fe$_3$C at ambient conditions. If the anisotropy persists to the pressure and temperature conditions of the inner core, Fe$_3$C might help explain the observed seismic anisotropy.

Accurate determination of sound velocities in iron-rich alloys is crucial for interpreting seismic observations of the Earth’s core. Nuclear resonant inelastic X-ray scattering (NRIXS) probes the vibrational properties of resonant isotopes, e.g. 57Fe. In conjunction with X-ray diffraction measurements, which provide density and bulk modulus information, the NRIXS method can be used to measure sound velocities of iron-rich samples [1, 2]. For such experiments, an X-ray source with high energy resolution and bunched time structure is required. The Advanced Photon source (APS) is one of the few places in the world that provide such facility. Recently, an X-ray diffraction capability was integrated into the nuclear resonant scattering and laser-heating setup at sector 3-ID of the APS, enabling simultaneous NRIXS and X-ray
X-ray diffraction measurements. *In situ* X-ray diffraction measurements allow us to detect microscale impurities, phase transitions and chemical reactions upon compression or heating, and to obtain information on sample pressure, grain size distribution, and unit cell volume, thus providing more reliable and accurate data of sound velocities.

We conducted experiments on 57Fe-enriched Fe$_3$C samples at room temperature. One sample consists of a few crystals with a size comparable to that of the focused X-ray beam, i.e., ~10 μm. The other sample can be considered a powder sample since the crystal size is less than 3 μm, and we used unfocused X-ray beam with a diameter of >100 μm. We found that at ambient conditions the V_P and V_S of the few-crystal Fe$_3$C are 5% and 16% higher than that of the powder Fe$_3$C, respectively. The Poisson’s ratio ν of the powder sample is 14% larger than that of the few-crystal sample, and closer to the limiting value of 0.5 for liquids (Fig. 1) [1]. These results indicate large elastic anisotropy in Fe$_3$C, consistent with the recent report of extreme elastic anisotropy in cementite on the basis of first-principle calculations and X-ray diffraction measurements [3, 4].

The few-crystal sample was further compressed to 50 GPa at room temperature. The V_P and V_S of this sample can be expressed as functions of density (ρ): V_P (km/s) = -3.99 + 1.29\rho \text{ (g/cm}^3\text{)}$ and V_S (km/s) = 1.45 + 0.24\rho \text{ (g/cm}^3\text{)}$ (Fig. 1) [2]. These results indicate that the addition of carbon to iron in the form of Fe$_3$C brings V_P and V_S of iron closer to that of the inner core [5], supporting carbon as a light element in the Earth’s inner core.

If Fe$_3$C remains highly anisotropic under the pressure and temperature conditions of the Earth’s inner core, it may be responsible for the observed seismic anisotropy. Furthermore, as the core temperature decreases over time, the liquidus phase of a carbon-bearing core may become increasingly carbon-rich. Could a variation in carbon concentration with depth explain the layered anisotropy structure of the inner core? To test this idea, we need to measure the sound velocities of Fe$_3$C and other iron-carbon compounds (i.e., Fe$_7$C$_3$) under simultaneous high pressures and high temperatures.

Experiments were carried out at Sector 3-ID of the Advanced Photon Source (APS) at Argonne National Laboratory. We thank Thomas Toellner, Ahmet Alatas and Bodgan Leu at Sector 3 of the APS at ANL and Vitali Prakapenka, Stanislav Sinogeiken, Wenge Yang, Yue Meng and Peter Liermann at HPCAT (Sector 16) of the APS for technical assistance and scientific discussions, Brian Toby, Jun Wang, Lynn Ribaudo and Sytyle M. Antao at 11-BM-B of the APS for XRD measurements and Donald Graczyk and Terry Cruse at ANL for converting 57Fe-foil to an oxide powder. We thank HPCAT and GSECARS (Sector 13) at the APS for providing sample preparation and ruby fluorescence facilities. This work was supported by NSF grant EAR0337612, EAR0609639 and EAR0738973, and partially by COMPRES, the Consortium for Materials Properties Research in Earth Sciences under NSF Cooperative Agreement EAR 06-49658. Use of the APS was supported by DOE-BES, under contract No. DE-AC02- 06CH11357.

MAIN REFERENCES

