Phase stability and thermal equations of state of Fe₃S and Fe₂S polymorphs to Earth's core pressures and high temperatures

Claire C. Zurkowski^a, Nigel M. Brauser^a, Eran Greenberg^b, Vitali B. Prakapenka^b, and Andrew J. Campbell^a

^a University of Chicago, Department of the Geophysical Sciences, 5734 S Ellis Ave, Chicago, IL 60637, USA
^b Center for Advanced Radiation Sources, 9700 South Cass Avenue, Building 434A, Argonne, IL 60439, USA

Abstract

The seismologically-determined density profile and dynamics of Earth's iron-rich core can only be explained by incorporating a small but significant light element component such as sulfur. Understanding the phase stability and pressure-temperature-volume relationships of iron-rich sulfides to core conditions is critical for assessing the core's composition. In this *in-situ* X-ray diffraction study, we determined the high P-T stability fields of Fe₃S and Fe₂S polymorphs to outer core pressures and high temperatures and fit their thermal equations of state. Between 26 and 140 GPa and at moderate temperatures, a Pnma Fe₂S structure coexists with Fe and FeO. Upon heating, below 85 GPa, the *Pnma* Fe₂S phase transitions to $I\overline{4}$ Fe₃S. Above 85 GPa, the *Pnma* Fe_2S phase transitions to a *P*62*m* Fe_2S structure at high temperatures. This phase is stable on the liquidus to 142 GPa. We fit thermal equations of state for I4Fe₃S and *Pnma* Fe₂S to 75 GPa and 137 GPa respectively and determined the following isothermal bulk moduli (K₀) and pressure derivatives (K'₀): K₀ = 124 \pm 2 GPa and K₀' = 5.2 \pm 0.1 for Fe₃S and K₀ = 149 \pm 11 GPa and K₀' = 5.1 \pm 0.3 for Fe₂S. Fe₃S was found to compress isotropically while the *Pnma* Fe₂S phase displayed anisotropic compressibility. Extrapolating the adiabatic density curves of Fe_3S and *Pnma* Fe_2S to outer core conditions, we concluded that 15-18 wt% S is required to account for the density deficit at the core-mantle boundary. Based on the phase relations determined in this study, Fe_2S , not Fe_3S is stable at outer core pressures and high temperatures and could play a critical role in the thermodynamics of Earth's core.