Experimental constraints on the fate of MgCO₃ and CaCO₃ subducted into Earth's lower mantle

Mingda Lv¹, Susannah M. Dorfman¹, James Badro², Stephan Borensztajn², Eran Greenberg³, Vitali B. Prakapenka³

¹ Department of Earth and Environmental Sciences, Michigan State University, Michigan 48824, U.S.A.

² Institut de Physique du Globe de Paris, Université Sorbonne Paris Cité, 75005, Paris, France

³ Center for Advanced Radiation Sources, The University of Chicago, Illinois 60439, U.S.A.

Carbonates are the main phases that transport carbon from the Earth's surface to its interior through subduction. Evidence from thermodynamic modeling, ab initio calculation, high pressure and temperature experimental observations, and diamond inclusions indicate that both magnesium and calcium carbonates can be transported to at least transition zone depths, and carbonates may thus host carbon in the lower mantle. To determine whether MgCO₃ and CaCO₃ are present in the deep mantle, a key issue is the thermodynamics and kinetics of reactions of these carbonates with major lower mantle phases bridgmanite and Ca-perovskite. However, the effects of carbonate polymorphism on phase equilibrium between carbonates and silicates are poorly constrained. Here, we report a series of high pressure and temperature experiments exploring the following reaction and its reversal:

 $CaCO_3 + MgSiO_3 \leftrightarrow MgCO_3 + CaSiO_3$,

at conditions ranging from the topmost lower mantle to the core-mantle boundary. Reaction products were determined in-situ by synchrotron X-ray diffraction and ex-situ by transmission electron microscopy with energy-dispersive X-ray spectroscopy. The results show that at shallow lower mantle pressure of 33 GPa, CaCO₃ + MgSiO₃ react to produce MgCO₃ and CaSiO₃, whereas at middle lower mantle pressure of 88 GPa, the reaction reverses to stabilize CaCO₃ + MgSiO₃. This pressure corresponds to the phase transition reported in recent experimental and theoretical studies of CaCO₃ from an orthorhombic post-aragonite structure with CO₃-coordination to a monoclinic $P2_1/c$ -h structure with CO₄-coordination. At core-mantle boundary pressure of 137 GPa, we observe CaCO₃ in contact with Fe-rich post-perovskite. Therefore, the major change in the CaCO₃ structure controls the fate of MgCO₃ and CaCO₃ in the deep lower mantle.