Jarosite, a mineral with a kagomé lattice, displays magnetic frustration yet orders magnetically below 65 K. As magnetic frustration can engender exotic physical properties, understanding the complex magnetism of jarosite comprises a multi-decade interdisciplinary challenge. To address this challenge, we use applied pressure to smoothly vary jarosite’s structure without manipulating the chemical composition, enabling a chemically invariant structure–function magnetocorrelation study. Using single-crystal and powder X-ray diffraction, we identify two pressure-induced phase transitions. By harnessing a suite of magnetic techniques under pressure, including SQUID-based magnetometry, time-resolved synchrotron Mössbauer spectroscopy, and X-ray magnetic circular dichroism, we construct the magnetic phase diagram for jarosite up to 120 GPa. Notably, we demonstrate that the magnetic ordering temperature increases dramatically to 240 K at 40 GPa, and then vanishes above a critical pressure of 45 GPa. Additionally, we conduct X-ray emission spectroscopy, Mössbauer spectroscopy, UV-visible absorption spectroscopy, Raman spectroscopy, and Fourier-transform infrared spectroscopy experiments, along with density functional theory calculations, to comprehensively map the magnetic and electronic structures of jarosite at high pressure. We use these maps to construct chemically-pure magnetostructural correlations which fully explain the nature and role of the magnetism in jarosite at extreme conditions.

Contributing Authors:

Ryan A. Klein¹, James P. S. Walsh¹, Samantha M. Clarke², Yinhsheng Guo¹, Danilo Puggioni³, Wenli Bi⁴,⁵, Gilberto Fabbris⁴, Yue Meng⁴,⁶, Daniel Haskel⁴, E. Ercan Alp⁴, Zhenxian Liu⁷, James M. Rondinelli³, Richard P. Van Duyne¹, Steven D. Jacobsen⁸, Danna E. Freedman¹*

Affiliations:

¹ Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
² Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, P.O. Box 808, L-350, Livermore, California 94550, United States
³ Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
⁴ Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
⁵ Department of Geology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
⁶ HPCAT, Geophysical Laboratory, Carnegie Institute of Washington, Argonne, Illinois 60439, United States
⁷ Department of Civil and Environmental Engineering, Institute of Materials Science, The George Washington University, Washington DC 20052, USA
⁸ Department of Earth and Planetary Sciences, Northwestern University, Evanston, Illinois 60208, United States

Presenter: Ryan A. Klein