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SiO2 is one of the most common, yet important, compounds found on Earth. Despite its compositional 

simplicity, SiO2 exhibits a complex phase diagram featuring a variety of thermodynamically stable crystalline 

phases, as well as numerous metastable crystalline polymorphs and glasses. This includes phase transition 

sequences and resulting polymorphs that are strongly path-dependent. In the solid state silicon strongly prefers 

four-coordinated tetrahedral crystallographic sites. This low coordination number results in pronounced 

structural flexibility, with a tendency to form extended silicate chains, sheets, and framework polyhedral motifs, 

and accounts for a majority of the mineral diversity observed in shallow-depth terrestrial rocks and commonly 

utilized SiO2-derived materials. Densification of silicates involving a change of the coordination number of the 

Si4+ cation is one of the sources of stratification of the Earth’s mantle, and is responsible for the major seismic 

discontinuities that are observed as a function of depth [1,2].  

A number of intermediate metastable silica phases have been reported, but their crystal structures have not 

been reliably determined, despite decades of research. Computational efforts employing density functional 

theory (DFT) and molecular dynamics identified a number of candidate structure models; however, extensive 

metastability results in a Gibbs free energy hyper-surface pitted with abundant local minima, and selecting the 

structures that are actually realized in nature has proven challenging [3-5]. One of these little-understood phases 

is cristobalite X-I, which forms on compression of α-cristobalite at ambient temperature above about 12.9 GPa 

[6-10]. Cristobalite, found typically in nature as the α-polymorph, is a high-temperature, four-coordinated form 

of SiO2 with well-documented occurrences in a variety of different geologic environments, including terrestrial 

igneous rocks, protoplanetary disks around young stars [11], and meteorites that were shocked beyond 10 GPa 

[12]. α-cristobalite was also the starting material for the first successful high-pressure synthesis of quenchable 

octahedral seifertite-SiO2 [4], found in heavily shocked meteorites such as Shergotty and Zagami [13,14], where 

it is considered a possible proxy of the peak pressure during shock metamorphism.  

Here, we report the results of single-crystal synchrotron x-ray diffraction experiments with α-cristobalite, 

using a diamond anvil cell, in which a well-diffracting specimen of the X-I phase was formed via a single-crystal 

to single-crystal transformation at ambient temperature. Our X-I structure model features only two symmetry 

independent Si sites, which are sufficient to produce the ideal SiO2 stoichiometry. All Si atoms reside in 

octahedral sites, which are arranged in an edge-sharing zigzag chain pattern. Our experimental results are 

compared with those of previously proposed structures [15], and are supplemented with density functional 

theory calculations that compare the enthalpy of various silica polymorphs on compression, and examine the 

dynamic stability of the X-I structure. These calculations show that cristobalite X-I’s enthalpy and stability sits 

between other tetrahedrally and octahedrally coordinated SiO2 phases above 5 GPa. Additional phonon density 

of states calculations do not predict any imaginary frequencies, confirming the dynamic stability of the structure 

determined from our X-ray diffraction experiment.
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