High pressure behavior of stibnite (Sb$_2$S$_3$)

Yuejian Wang, Ilias Efthimiopoulos, Cienna Buchan
The Department of Physics, Oakland University, Rochester, MI 48309

ABSTRACT

High-pressure x-ray diffraction and Raman spectroscopic study of Sb$_2$S$_3$ up to 53 GPa reveals two phase transitions at 5 GPa and 15 GPa, respectively. The first transition is evidenced by noticeable compressibility changes in distinct Raman-active modes, in the lattice parameter axial ratios, the unit cell volume, as well as in specific interatomic bond lengths and bond angles. By taking into account relevant results from the literature, we assign these effects to a second-order isostructural transition arising from an electronic topological transition in Sb$_2$S$_3$ near 5 GPa. Close comparison between Sb$_2$S$_3$ and Sb$_2$Se$_3$ up to 10 GPa reveals a slightly diverse structural behavior for these two compounds after the isostructural transition pressure. This structural diversity appears to account for the different pressure-induced electronic behavior of Sb$_2$S$_3$ and Sb$_2$Se$_3$ up to 10 GPa, i.e. the absence of an insulator-metal transition in Sb$_2$S$_3$ up to that pressure. Finally, the second high-pressure modification appearing above 15 GPa appears to trigger a structural disorder at ~20 GPa; full decompression from 53 GPa leads to the recovery of an amorphous state.